Forking Docker will lead to more fragmentation

If you have been keeping up with Docker lately, you may have come across my blog post about the sad state of Docker. In this post, I go over how the 1.12 release appeared interesting from all the marketing announcements and the constant copying and pasting of the same Docker content into blogs over the world. However, many others and I expressed our opinions on Hacker News on how Docker failed to deliver a quality product and how they failed to create a quality release. The New Stack then summarized all of the weekend discussions going on in a new blog post and discussed that a fork of Docker may arise. Is a fork really the best answer? Let’s take a look.

The nice thing about open source software is that anyone can take the software and modify it as needed or even create their own version of the software for redistribution. Software repositories like GitHub make it really easy for developers to fork a project and begin making their own changes and improvements. A recent example was the fork of OwnCloud into NextCloud. My problem with forking is that it leads to fragmentation. I personally like one or two ways of doing something well versus many different ways to partially achieve the same goal.

The container space is already starting to grow rapidly in terms of building and orchestration. The biggest container format is of course Docker and they have Swarm for their container orchestration. CoreOS also has their own container runtime called Rocket which is starting to gain traction and uses Kubernetes for orchestration. There are many other companies sprouting up in the container management area with their own unique solutions. However, Kubernetes appears to be coming the standard orchestration layer that many products use now. To help standardize containers, the Open Container Initiative (OCI) was formed to help define how containers work.

The OCI was created by members of CoreOS, Red Hat, Docker, and a few others on June 22, 2015 and gained support from companies like Apcera, Google, Apprenda, Amazon, and many more. Collaboration between companies for the greater good is terrific and we need more of this. Docker made strides to make an official OCI compliant version in their v1.11 release. Progress is being made to better standardize in this space but it takes time to achieve. Instead of forking Docker, the community should continue to raise their concerns in a nice manner and wait a little bit longer for change to happen.

Creating more fragmentation will be counterproductive because the attention of the people will be split amongst projects. How will companies new to containers and microservices ever learn to adopt this great new way of doing things if they can never decide on what to use? Anyone can fork Docker but we need to ask ourselves if another container solution is really needed when we have many to choose from already. If the answer is yes, we must ask ourselves who will maintain it? How long can this fork last? How much time will be wasted? Do the forkers have enough resources to make a quality project? How will they make their product secure and address vulnerabilities?

How about instead we stay positive and keep containing?

The Sad State of Docker

I have always been a big fan of Docker. This is very visible if you regularly read this blog. However, I am very disappointed lately how Docker handled the 1.12 release. I like to think of version 1.12 as a great proof of concept that should not have received the amount of attention that it already received. Let’s dive deep into what I found wrong.

First, I do not think a company should market and promote exciting new features that have not been tested well. Every time Docker makes an announcement, the news spreads like a virus to blogs and news sites all over the globe. Tech blogs will basically copy and paste the exact same procedure that Docker discussed into a new blog post as if they were creating original content. This cycle repeats over and over again and becomes annoying because I am seeing the same story a million times. What I hate most about these recent redundant articles is that the features do not work as well as what is written about them.

I was really excited hearing about the new Swarm mode feature and wanted it to work as described because this means that one day I can easily make a Swarm cluster with my four Raspberry Pi’s and have container orchestration, load balancing, automatic failover, multi-host networking, and mesh networking features without any effort. Swarm in v1.12 is very easy to setup versus the predecessor and I wanted to put it in production at home (homeduction). To test Swarm, I setup a few virtual machines using docker-machine on my laptop and went through the Swarm creation process and then began to run into issues when deploying my applications.

An important feature to have in a Swarm cluster is multi-host networking for containers. This allows containers to talk to each other on a virtual network across many hosts running the Docker engine. Multi-host networking is important for containers to communicate with each other such as web application connecting to another container with MySQL. The problem I faced is that none of my containers could communicate across hosts. When it did work sometimes, the mesh networking would not route traffic properly to the host running my container. This means none of my applications worked properly. I went to the Docker forums and many people shared my pain.

It is not wise to explode the Internet and conventions with marketing material about exciting new features that do not work as presented. There are still many bugs in Swarm that need to be fixed before releasing to the general public to have them beta test for you. What is the rush to release? Will it hurt that much to wait a few more weeks or months to do it right and have the product properly working and tested? Yes, we all know Docker is awesome and is trying to play catch up with competitors such as Apcera and Kubernetes, but please take it slow and make Docker great again!

[Edit 8/31/2016]

Tweaked paragraphs to make it more clear that my testing was not done on the Raspberry Pi and done with docker-machine on a laptop.

Moving from a single machine with Docker to a cluster of Pi’s

I decided to finally make use of my four Raspberry Pi model 3’s and take the challenge to move all of my home services to them. Previously, I ran a x86 Desktop as a server in my living room. The loud noises coming from the server made it uncomfortable to be in sometimes. The loud noisy box is home to this website and many other applications such as Plex, Transmission, OpenVPN, Jenkins, Samba, and various Node.js projects all running in Docker. Having all of those applications running on a single box is a single point of failure and makes system administration harder when reboots are required.

Continue reading Moving from a single machine with Docker to a cluster of Pi’s

Running an SSH server in a container on Apcera

SSH is the Swiss Amy Knife of system administration and provides the easiest way to manage a system remotely. When running containers, there is typically someway to connect to a container’s shell from a client that communicates through an API like Docker or by using an SSH solution which is how Apcera does it. Some applications that run in containers may require SSH access to communicate with other containers or services. For example, Hadoop is a popular cluster application that uses a distributed filesystem spread across many nodes and communicates with each other via SSH. Let’s take a look on how to setup an SSH server running inside a capsule (a minimal OS container) on the Apcera Platform.

Continue reading Running an SSH server in a container on Apcera